4(3y^2+22y+4)=1

Simple and best practice solution for 4(3y^2+22y+4)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(3y^2+22y+4)=1 equation:


Simplifying
4(3y2 + 22y + 4) = 1

Reorder the terms:
4(4 + 22y + 3y2) = 1
(4 * 4 + 22y * 4 + 3y2 * 4) = 1
(16 + 88y + 12y2) = 1

Solving
16 + 88y + 12y2 = 1

Solving for variable 'y'.

Reorder the terms:
16 + -1 + 88y + 12y2 = 1 + -1

Combine like terms: 16 + -1 = 15
15 + 88y + 12y2 = 1 + -1

Combine like terms: 1 + -1 = 0
15 + 88y + 12y2 = 0

Begin completing the square.  Divide all terms by
12 the coefficient of the squared term: 

Divide each side by '12'.
1.25 + 7.333333333y + y2 = 0

Move the constant term to the right:

Add '-1.25' to each side of the equation.
1.25 + 7.333333333y + -1.25 + y2 = 0 + -1.25

Reorder the terms:
1.25 + -1.25 + 7.333333333y + y2 = 0 + -1.25

Combine like terms: 1.25 + -1.25 = 0.00
0.00 + 7.333333333y + y2 = 0 + -1.25
7.333333333y + y2 = 0 + -1.25

Combine like terms: 0 + -1.25 = -1.25
7.333333333y + y2 = -1.25

The y term is 7.333333333y.  Take half its coefficient (3.666666667).
Square it (13.44444445) and add it to both sides.

Add '13.44444445' to each side of the equation.
7.333333333y + 13.44444445 + y2 = -1.25 + 13.44444445

Reorder the terms:
13.44444445 + 7.333333333y + y2 = -1.25 + 13.44444445

Combine like terms: -1.25 + 13.44444445 = 12.19444445
13.44444445 + 7.333333333y + y2 = 12.19444445

Factor a perfect square on the left side:
(y + 3.666666667)(y + 3.666666667) = 12.19444445

Calculate the square root of the right side: 3.492054474

Break this problem into two subproblems by setting 
(y + 3.666666667) equal to 3.492054474 and -3.492054474.

Subproblem 1

y + 3.666666667 = 3.492054474 Simplifying y + 3.666666667 = 3.492054474 Reorder the terms: 3.666666667 + y = 3.492054474 Solving 3.666666667 + y = 3.492054474 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-3.666666667' to each side of the equation. 3.666666667 + -3.666666667 + y = 3.492054474 + -3.666666667 Combine like terms: 3.666666667 + -3.666666667 = 0.000000000 0.000000000 + y = 3.492054474 + -3.666666667 y = 3.492054474 + -3.666666667 Combine like terms: 3.492054474 + -3.666666667 = -0.174612193 y = -0.174612193 Simplifying y = -0.174612193

Subproblem 2

y + 3.666666667 = -3.492054474 Simplifying y + 3.666666667 = -3.492054474 Reorder the terms: 3.666666667 + y = -3.492054474 Solving 3.666666667 + y = -3.492054474 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-3.666666667' to each side of the equation. 3.666666667 + -3.666666667 + y = -3.492054474 + -3.666666667 Combine like terms: 3.666666667 + -3.666666667 = 0.000000000 0.000000000 + y = -3.492054474 + -3.666666667 y = -3.492054474 + -3.666666667 Combine like terms: -3.492054474 + -3.666666667 = -7.158721141 y = -7.158721141 Simplifying y = -7.158721141

Solution

The solution to the problem is based on the solutions from the subproblems. y = {-0.174612193, -7.158721141}

See similar equations:

| H=-16x^2+70x+3 | | 3g=-33 | | 4(3y^2+22w+4)=1 | | 8x+2/7y=3 | | 7-3x=2+x | | -7x+2y=17 | | -4x+5y=-6 | | 3(x+5)=3(x)+3(5) | | 4x-9=4(x+9) | | 2.5x^2-10x-15=0 | | -4x=-3.6+4x | | 4(3y^2+22w+7)=1 | | 2(6+x)=14+2x | | 2y^7-2y^3=0 | | 1/2x=1/4x+3/7 | | 4.8x+12.96=-3.6+2.88 | | 9x-8=9x+45 | | 0.8x-4.2=0.6 | | c-2c= | | 4x=1/x2 | | -x-2=6+-2x | | 11=9x-2 | | 5x(4x+1)(x-8)=0 | | 2(x-1)-3(x+2)=2-x | | 9r=54 | | y=-16x^2+64 | | 13x+8=10x-7 | | c-64=20 | | 5.4x-6.3=7.2 | | 7p=84 | | 6c+d+9c+7d= | | 15r^2+4r-32=0 |

Equations solver categories